Exercise 1

1) Implicit function the for monifolods (Thy 2.8.16) would prove this point straight away. We need to find the appropriate diffeomosphism \& show that t is the preimage of a regular value.

The definition of the set dready gives away the right function.

Let $F: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ be defined by

$$
F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}^{2}-x_{4}^{2}-1, x_{2}^{2}+x_{3}^{2}-2\right)
$$

F is polinomial in all voniebles, so cleosly smooth.

Then $M_{n} \mathbb{R}^{4}=\left\{\vec{x} \in \mathbb{R}^{4} \mid F(\vec{x})=(0,0)\right\}$, that is $M=F^{-1}(\vec{O})$ and its dimension (see do Proposition 2.8.16) is $4-2=0$. We still need to show that $(0,0)$ is a regular value for F.

For sony $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}$ we have

$$
d F_{\left(x_{1}, x_{2}, x_{3}, x_{4}\right)}=\left(\begin{array}{cccc}
2 x_{1} & 0 & 0 & -2 x_{4} \\
0 & 2 x_{2} & 2 x_{3} & 0
\end{array}\right)
$$

On $M, F(\vec{x})=\overrightarrow{0}$, so x_{1} and x_{4} cannot simultaneously ravish, and the same holds for x_{2} and x_{3}
\Rightarrow F has maximal rank, which means that \vec{O} is a regular value concluding the exercise
2) By theorem 2.8.22, the tangent space con be computed as ter $d F_{p}$.

$$
\operatorname{ker} d F_{(1,-1,1,0)}=\operatorname{ker}\left(\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & -2 & 2 & 0
\end{array}\right)
$$

That is

$$
T_{(1,-1,1,0)} M=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4} \mid x_{1}=0, x_{3}-x_{2}=0\right\}
$$

Note you con solve this exercise computing a local chart for the manifold, e.g.

$$
\varphi(u, v)=\left(\sqrt{1+v^{2}},-\sqrt{2-u^{2}}, u, v\right)
$$

defined an a map from $(0, \sqrt{2}) \times \mathbb{R} \rightarrow U$, $U=\left\{\vec{x} \in \mathbb{R}^{4} \mid x_{1}>0,-\sqrt{2}<x_{2}<0,0<x_{3}<\sqrt{2}\right\}$, with inverse

$$
\varphi^{-1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{3}, x_{4}\right)
$$

Then $d \varphi(1,0)$ would give you the rectors that span the talufent space.

EXERCISE 2

1) Theorem 7.4 .4 is the tool to compute pullbacks

$$
\begin{aligned}
\phi^{*} \omega & \left.=\phi^{*}(y) \phi^{*}(z) \phi^{*}(d x) \wedge \phi^{*}(d y) \wedge \phi^{*} / d z\right) \\
& =(y \circ \phi)(z \circ \phi) d(x \circ \phi) \wedge d(y \circ \phi) \wedge d(z \circ \phi) \\
& =2 u v \cdot t \cdot d\left(u^{2}-v^{2}\right) \wedge d(2 u v) \wedge d t \\
d u \wedge d u & =2 u v t(2 u d u-2 v d v) \wedge(2 v d u+2 u d v) \wedge d t \\
=d v \wedge d v \downarrow & =8 u v t\left(u^{2} d u \wedge d v-v^{2} d v \wedge d u\right) \wedge d t \\
=0 & =8 u v t\left(u^{2}+v^{2}\right) d u \wedge d v \wedge d t^{-1}
\end{aligned}
$$

2) $I_{x} w=i_{x} d w+d l_{x} w$

Since $\omega \in \Omega^{3}\left(\mathbb{R}^{3}\right)$ and $\Omega^{4}\left(\mathbb{R}^{3}\right)=\{0\}$ we know without need of computing anything that $d \omega=0$

$$
\begin{aligned}
& \Rightarrow L_{x} \omega=d L_{x} \omega \\
& x=\frac{\partial}{\partial x} \Rightarrow U_{x} \omega=y z(\overbrace{U_{x} d x}^{=1} \wedge d y \wedge d z \\
& O \equiv\left\{\begin{array}{l}
+(-1) y z d x \wedge\left(l_{x} d y\right) \wedge d z \\
+y z d x \wedge d y \wedge\left(l_{x} d z\right)
\end{array}\right. \\
& =y z d y \wedge d z \\
& \Rightarrow d l_{x} \omega=d(y z d y \wedge d z)=z d y \wedge d y \wedge d z \\
& +y d z \wedge d y \wedge d z \\
& =0 \text { since } d y n d y= \\
& d z \wedge d z=0 \\
& \Rightarrow \mathcal{L}_{x} \omega=0
\end{aligned}
$$

ExERCISE 3.
By definition $v^{b}:=\langle v$,
For convenience denote $F: V \rightarrow V^{*}$

$$
v \mapsto v^{b}=\left\langle v_{1} \cdot\right\rangle
$$

Since inner products are linear

$$
F(\alpha X+\beta Y)=\langle\alpha X+\beta Y, \cdot\rangle=\alpha\langle X, \cdot\rangle+\beta\langle Y, \cdot\rangle
$$

$$
=\alpha F(x)+\beta F(y)
$$

that is, F oud, thus, b is liners.
We nerd to check that F is bijective. Since $\operatorname{dim} V=\operatorname{dim} V^{*}$, it is enough to check that F is injecting (we did this multiple times in the course, see e-g. Remark 5.1.11).

By linearity, injectivity is equivalent to soy $\operatorname{ker}(F)=\{0\}$.

Let $x \in \operatorname{Ker}(F)$

$$
\Rightarrow \forall y \in V, \quad F(x)(y)=\langle x, y\rangle=0
$$

Pick $y=x \Rightarrow F(x)(x)=0$

$$
\left\langle x^{\prime \prime}, x\right\rangle=\|x\|^{R}
$$

That is $x=0$.

EXERCISE 4

1) $\Pi: T^{*} M \longrightarrow M \quad(q, p) \in T^{*} M$ means $q \in M, p \in T_{q}^{*} M$
therefore $\quad d \pi_{(q, p)}: T_{(g, p)}\left(T^{*} M\right) \rightarrow T_{q} M$ and thees $d \pi_{(q, p)}^{*}: T_{q}^{*} M \longrightarrow T_{(q, p)}^{*}\left(T^{*} M\right)$

That is $\eta: T^{*} M \longrightarrow T^{*}\left(T^{*} M\right)$ and Satisfies the section property by construction

$$
\Rightarrow \eta \in \Omega^{\wedge}\left(T^{*} M\right) \quad, I I: T^{*}\left(T^{*} M\right) \rightarrow T^{*} M
$$

projection to bore

$$
\Rightarrow I \cdot \eta=i d_{T \times M}
$$

2) Let $\left(x^{i}, s_{i}\right)$ be local words on $T^{*} M$

Since by definition $\pi(x, \xi)=x$,

$$
\begin{aligned}
& d \pi^{*}\left(d x^{i}\right)=d\left(x^{i} \circ \pi\right)=d x^{i} \\
\Rightarrow & \eta_{(x, \xi)}=d \pi^{*}\left(\xi_{i} d x^{i}\right)=\xi_{i} d x^{i}
\end{aligned}
$$

3) If we show that there is a nowhere polishing $2 n$-form on $T^{*} M$, we ore
done, since that is how we defined orientability.

First of all, $\omega=d_{\eta}$ locally is $\omega=d \xi_{i} \wedge d x_{i}$ (by our previous point 2).
w is just a two-form but is made of sums of all the $2 n$ basis elements $\left\{d x^{i}, \partial \xi_{i}\right\}$, so toking n products of itself could yield a good $2 n$-form. In dud

$$
\underbrace{\omega \wedge \ldots \wedge \omega}_{n-\text { times }}=\left(d \xi_{i_{1}} \wedge d x^{i_{1}}\right)_{\wedge \ldots \wedge}\left(d \xi_{i_{n}} \wedge d x^{i_{n}}\right)
$$

Einstein
all pairwise distinct

$$
\begin{aligned}
& =\sum_{\sigma \in S_{n}}\left(d \xi_{\sigma(1)} \wedge d x^{\sigma(1)}\right) \wedge \ldots \wedge\left(d \xi_{\sigma(n)} \wedge d x^{\sigma(n)}\right) \\
& =n!d \xi_{1} \wedge d x^{1} \wedge \ldots \wedge d \xi_{n} \wedge d x^{n}
\end{aligned}
$$

there ore n ! owbination oud the reordering of the terms, since hey always lowe in pairs, hes + sign.
which is clearly a nowhere vanishing $2 n$-form

EXERCISES

1) The integral of a n-form on a manifold is essentially the computation of the volume of a parellelotape pulled back from the mouifold to the euctiduon space via the athos: If (U, φ) is a chart then $\int_{\varphi(u)}\left(\varphi^{-1}\right)^{*} \omega$ is effectively e Encholeou integral.

The relation to the volume of the porallelotope is opponent from the definition of the wedge product of 1 -forms

$$
\left(\omega^{1} \wedge \ldots \wedge \omega^{n} \mid v_{1}, \ldots, v_{n}\right)=\operatorname{det}\left(\begin{array}{ccc}
\omega^{1}\left(v_{1}\right) & \cdots & \omega^{1}\left(v_{n}\right) \\
\vdots & & \\
\omega^{n}\left(v_{n}\right) & \cdots & \omega^{n}\left(v_{n}\right)
\end{array}\right)
$$

which directly corresponds to the signed volume of the parallel lotope spanned by the vectors

$$
x_{i}=\left(W^{1}\left(V_{i}\right), \ldots, W^{n}\left(V_{i}\right)\right)
$$

A delicate point is how this pullback can be achieved, since the manifold is likely patched by charts. It turns out that partitions of unity dou't jus allow us
to decompose the integral over single charts in a natural way: the result
that one obtains turns out to be indepuderet of the chosen partition of unity.

This boils down to the fact that partitions of minty sum up to 1 at each point, oud thus they allow to transition from a covering to another essentially by exploiting a multiplication by 1 and resucuating up.

One last technical remerle is that we assumed n-forms to have coupect support, this to aroid quiscks (see Example 8.3.7) and to prevent convergence issues.
2) η is closed if $d \eta=0$, here

$$
d \eta=-d x^{2} \wedge d x^{1}+d x^{1} \wedge d x^{2}=2 d x^{1} \wedge d x^{2} \neq 0
$$

Since $H_{o l}^{1}\left(\mathbb{R}^{2}\right)=\{0\}$, n comment be exact
either.
3)

$$
\int_{S^{1}} \eta=\int_{\substack{D^{1} \\\left\{\vec{x}^{1} \in \mathbb{R}^{2}\left(\|x\|_{1}\right\}\right\}}} d \eta=2 \int_{D^{1}} d x^{1} \wedge d x^{2}=2 \pi
$$

Note alternatively you con compute it vie the pull beck by

$$
\begin{aligned}
\varphi\left(x^{1}, x^{2}\right) & =(\cos \theta, \sin \theta) \\
\Rightarrow \varphi^{4} \eta & =-\sin \theta d \cos \theta+\cos \theta d \sin \theta \\
& =d \theta
\end{aligned}
$$

and thus $S_{\mathbb{S}^{\prime}} \eta=\int_{0}^{2 \pi} d \theta=2 \pi$

